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Project Overview
• History: FOA: DE-FOA-0001085; Topic 1: Process development and optimization of 

a single unit operation for the upgrading of chemically or biologically derived  
intermediates to fuels and products. The project successfully went through initial 
validation, intermediate verification, passing all milestones. 

• Project Goal
1. Develop a viable bioprocess to convert biorefinery waste to bioplastics at less than $5 dollar/Kg.
2. Integrate technical advancements and TEA to evaluate the impact on lignocellulosic biorefinery.
3. Overcome the key challenges for biorefinery cost-effectiveness and sustainability in the BETO

MYPP. Bring down the biofuel cost to $3/GGE.
• BETO Missions Addressed:

1. Manage biorefinery waste.
2. Reduce carbon emission by complete biomass usage.
3. Improve biorefinery economics and sustainability.
4. Deliver biodegradable plastics with proper structure and properties.
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Project Overview: Heilmeier Catechism Summary
• What we are trying to do? 

• Transform biorefinery economics and sustainability with the value-added bioplastics production from lignin-
containing waste stream.

• Produce structure-beneficial and cost-effective bioplastics.

• What is the state of the art? What is the limit?
• Part of the lignin waste are burned to power the operation, and the remaining were disposed as waste 

stream.
• Limited value recovery and low overall carbon efficiency – The success of modern biorefinery depends on 

the value-added products such as DDGS. 

• Why is the project important?
• Bring down the biofuel price to competitive range to enable lignocellulosic biorefinery ($259 billion 

economic potential and 1.1 million jobs).
• Address the fossil fuel plastics challenge with low cost and structurally controlled PHAs.
• Improve biorefinery and environmental sustainability by turning waste to bioplastics ($10.5 Billion market 

size and 22% annual growth).
• What are the risks?

• Lignin recalcitrance and chemical features not suitable for conversion. 
• Integration with biorefinery is challenging: the waste stream is insoluble and contains inhibitors
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Management
• Defined and measurable milestones were laid out for technology

development and commercialization.
• Go/No-Go milestones were set at the end of each year and each of the two budget 

periods. BP1 ends at 24 months.
• Monthly group teleconferences with the team were implemented to evaluate the

progresses against milestones. Risk mitigation strategies were designed and 
technoeconomic analysis guided the development. 

• Monthly teleconferences between the PI and the program management are
implemented to evaluate progresses, mitigate risks, and address challenges.

• Engage industrial partners and advisors including ICM inc. and others
for  deliverables relevant to EERE MYPP.

• Integrate TEA throughout the project to ensure the relevance of the project
outcome.



Management Approach – Go/No-Go Milestones

Time Point Benchmark End of BP1 End of the Project
Metrics Milestones Milestones Milestones
Titer 0.04g/L 2.5g/L 8.4g/L

Efficiency N.A. 30% 40%
MPSP1 N.A. N.A. $5/Kg
MESP2 N.A. N.A. N.A.
~$/GGE3 N.A. N.A. ~$3/GGE

1. Minimal PHA 
Selling Price

2. Minimal Ethanol 
Selling Price

3. Gasoline Gallon 
Equivalent

• Defined S.M.A.R.T. Go/No-Go milestones were set and implemented 
to ensure project progresses.

• The technical milestones were designed in a way to ensure that the 
economic targets can be achieved. Full ASPEN model was built.

• Frequent communications within the team and with BETO project 
management to measure against the milestones.

• StageGate and Verification to gain inputs for project enhancement.

Technical 
Advance-
ments
Derive 
Economic 
Output

TEA 
Informs 
Technology 
Develop-
ment



Technical Approach – Advancing the State-of-the-Art

PHA Production 

Lignin depolymerization

Aromatic compound 
conversion

PHA production
And accumulation

Challenges for efficient lignin bioconversion –
Recalcitrance of lignin.
• Redox reactions instead of hydrolysis.
• Diverse chemical linkages.
• Diverse aromatic compound monomers 
• Diverse chemical intermediates

Zhao, et al. Green Chem. 18:1306-12. 
Xie, et al. Ind. Biotech. 12: 161-167.
Xie, et al. ACS Sust. Chem. Engin., 5:2215-2223

Obj. 1: Strain screening (Task 1) and 
engineering (Task 2) to achieve efficient 

conversion of lignin and aromatics into PHA

Obj. 2. T1:  Pretreatment 
and fractionation 
advancement to 

depolymerize lignin 

Obj. 2. T2: 
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to improve 
conversion 
efficiency
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Technical Approach – Holistic Efforts to Achieve Deliverables

Time Point Benchmark End of BP1 End of the Project
Metrics Milestones Milestones Milestones
Titer 0.04g/L 2.5g/L 8.4g/L

Efficiency N.A. 30% 40%
MPSP1 N.A. N.A. $5/Kg
MESP2 N.A. N.A. N.A.
~$/GGE3 N.A. N.A. ~$3/GGE

Strain Engineering
– systems biology-
guided design for  
efficient conversion

Strain Screening –
broad carbon  

source and lignin  
utilization

Objective 1  
Process  
Enablement

Pretreatment &  
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Optimization –
lignin processibility

Fermentation  
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Objective 2  
Process  
Development

Process Evaluation
– technoeconomic
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Process Scale-up
– integration

with biorefinery

Objective 3  
Process  
Optimization  
&Scale-up

Risk Mitigation:
1. Holistic approach to address all 

technical barriers. 
2. Go/No-Go milestones directly 

tied to the deliverables. 



Technical Approach – Task Integration

Strain Engineering
– systems biology-
guided design for  
efficient conversion

Strain Screening –
broad carbon  

source and lignin  
utilization

Pretreatment &  
Fractionation  

Optimization –
lignin processibility

Fermentation  
Optimization –

process  
development

Process Evaluation
– technoeconomic

analysis

Process Scale-up
– integration

with 
biorefinery

Objective 1  
Process  
Enablement

Objective 2  
Process  
Development

Objective 3  
Process  
Optimization  
&Scale-up

Responses to Previous Review:
1. Complete ASPEN model to 

integrate the process with 
biorefinery.

2. More emphasis on biorefinery
design than enzyme 
deploymerization.

3. More refined mass balance 
and conversion ratio to 
integrate with TEA.

Integration for deliverables:
1. Technical advancements were 

evaluated in TEA in relevance 
to achieving milestones, MPSP 
and GGE targets.

2. TEA identifies the economic 
drivers to guide the R&D.

3. Holistic integration of metabolic 
and process engineering to 
achieve the economic targets.



Broad Scientific Impact and Transformative Industrial Impact
• Tangible and Transformative Industrial Impact

1. Develop a viable bioprocess to convert biorefinery waste to bioplastics at less than $5 dollar/Kg.
2. If the PHA is sold at $5/Kg, the project will bring down the MESP to below $3/GGE range.
3. Constantly engage biorefinery companies like ICM, ADM, and POET.
4. We have scaled up the technology with Altex for whole biomass conversion to bioplastics.
5. We have engaged with Danimer Scientific to work on additional funding to produce bioplastics

composite for packaging industries, addressing the concerns from previous review.
6. We obtained one licensing agreement.

• Broad Energy and Environmental Impacts– Well Addressing BETO Missions
1. Improve biorefinery sustainability and cost-effectiveness with value-added products from waste.
2. Address the plastics challenges by providing structure-controlled performance-enhancing PHA.

• Broad Scientific Impacts
1. 44 publications with total impact factors at 271.
2. One PCT patent application, and one patent disclosure filed. 
3. Numerous scientific presentations and special events to engage companies. 



Progresses and Outcomes
Time Point Benchmark End of BP1 End of the Project
Metrics Milestones Actual Milestones Actual Milestones Actual

Titer 0.04g/L 0.1g/L 2.5g/L 4.6g/L 8.4g/L 10 g/L

Efficiency N.A. 2.5% 30% >40% 40% >40%

MPSP1 N.A. $240 N.A. $6.07 $5/Kg $2.06/Kg

MESP2 N.A. N.A. N.A. N.A. N.A. $1.62/Gal

~$/GGE3 N.A. N.A. N.A. N.A. ~$3/GGE $2.43/GGE

40 times increases of titer, 20 times of efficiency, and 40 
times decrease of MPSP.

2 times increase of titer, further efficiency 
increase, and 3 times decrease of MPSP.

1. The project has achieved all milestones including both the technical and economic 
ones.

2. The project has led to 44 publications, one patents, and one disclosure.
3. The technical achievements have enabled the economic targets. 
4. The project is being scaled up to 50 Liter scale.



Systems Biology-guided Strain Screening and Engineering for Better Conversion

Lin, et al., Green Chemistry, 18: 5536-5547.

Eight times of increase in lignin-to-PHA 
conversion titer using AFEX derived lignin.  



Bioconversion Improvement through New Pretreatment and Fractionation Techs

Technical Achievement: Simultaneous improve 
carbohydrate and lignin conversion. >2 times 
increase of efficiency and >3 times increase of 
titer in lignin-to-PHA routes. 
Scientific Discovery: Less uniform, low 
molecular weight lignin are more bioprocessible. 

Liu et al. Green Chemistry, 19, 4939-4955
Xie et al. ACS Sust. Chem. Engin., 5:2215-2223.
Liu et al. Biotech. Biofuel, 11: 21
Liu et al. Sust. Energy Fuel, 3 (8), 2024-2037.



Plug-in Process of Lignin (PIPOL) to Transform Current Biorefinery Designs

Liu et al. Under Revision
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A Complete ASPEN Model for PIPOL and Lignin Processing

Technical Achievement: 
PIPOL has improved
carbohydrate conversion in 
leading pretreatments and 
enabled the lignin streams 
from these pretreatments to 
be used for bioplastics 
production. 
Economic Relevance: 
A full ASPEN model revealed 
that the AFEX and SEP can 
be integrated with PIPOL to 
produce market competitive 
bioplastics
Scientific Discovery: 
Fractionation of lignin 
residues to low molecular 
and solubilized components 
will improve bioconversion.

Liu et al. Under Revision
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Scenario 1 
DSA-PIP 

Scenario 2 
SEP-PIP 

Scenario 3 
LHW-PIP 

Scenario 4 
AFEX-PIP 

Scenario 5 
SHP-PIP 

Annual production/MMkg 2.19 3.21 2.6 3.54 2.02 
Total capital cost/MM$ 44.98 42.64 42.13 39.85 42.12 
Total operation cost/MM$/yr 11.2 12.42 12.26 13.24 14.65 
Raw material/MM$/yr 4.88 5.9 5.77 7.4 8.12 
Utilities/MM$/yr 0.268 0.267 0.266 0.27 0.266 
Unit cost/$/kg 7.52 5.49 6.73 5.05 9.9 
Rate of return/% 10 10 10 10 10 
Minimum selling price/$/kg 9.58 6.82 8.32 6.18 11.99 

 



Reiterative Systems Biology Analysis to Improve PHA Conversion

Liu et al. In Preparation
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Reiterative Systems Biology Analysis to Improve PHA Conversion

Liu et al. In Preparation

UNITS AES-M1 AFEX-
PIPOL-M2

Annual production MMkg 11.425 12.191
Total Capital Cost MM$ 45.10 45.12

Total Operating Cost MM$/yr 11.79 14.93
Raw Material MM$/yr 5.63 8.35

Utilities MM$/yr 0.32 0.32
Unit cost $/kg 1.55 1.71

Rate of return % 10 10
MPSP (PHA) $/kg 1.94 2.08

AES-M1

Reiterative biodesign delivers two strains to 
bring PHA price down to $2 dollar range with 
uniform structure, enabling MESP at $1.6 range



Process Scale-up at 1 Liter and 50 Liter Scale

MPSP
($/kg)

If sold 
at :

NEW 
MESP

MESP
reduction

2.06 2.2 2.65 -0.18

5.5 1.62 -1.21

Scale-up at 
50L scale at 
ABPDU, 
LBNLThe technology has been scaled up at 1 liter scale to achieve 

targeted performance and all milestones. We are working on scale 
up at 50 Liter scale in ABPDU.



Summary of Progresses

• The project takes a holistic approach to integrate microbial strain screening, 
engineering, biorefinery design, process integration and scale up to achieve record 
level of efficiency, titer, and productivity for converting biofinery waste lignin into PHA. 

• The technical advances allows us to achieve all milestones, including the Go/No-Go 
Milestones. Current technology validation is at 1 Liter scale. The technical metrics 
includes >40% conversion efficiency, >10g/L titer, <$2.5/Kg PHA, and approximate 
$1.6/gallon ethanol, and approximately $2.5/GGE.

• The technology integration with both current biorefinery configurations and new 
biorefinery designs were evaluated and the economic drivers were identified. 

• The project emphasizes on biorefinery integration, instead of model compounds or 
other lignin sources. The deliverables thus can directly translate into biorefinery
solutions. 

• The fundamental understanding on lignin chemistry, microbial systems biology, and 
biorefinery design can guide the future biorefinery advancements. 



Summary
The project delivered innovative solutions for converting biorefinery waste to bioplastics, 
transforming biorefinery sustainability and cost-effectiveness, along with low-cost bioplastics.

1. Approach and Team
• Process enablement by microbial engineering
• Process development by fractionation and fermentation improvement
• Process integration with biorefinery by TEA and scale-up.
• Vigorous management to ensure Go/No-Go milestones are met, and these milestones integrates 
technology and economics to ensure the project deliverables is relevant to biorefinery industry.

2. Impact
• The project is directly addressing MYPP goals.
• Aspen Plus model showed that the process can significant reduce MESP and produce bioplastics at ~$2. 
• The project produces cost-effective bioplastics with more uniform structure, potentially for improved 
performance.

3. Technical Accomplishments/Progress/Results
• Innovative engineered microbial strain for efficient conversion of lignin to PHA
• Innovative pretreatment/fractionation design to improve lignin processiblity and

enable high PHA yield by co-conversion of lignin and Residue sugar.
• >40% conversion efficiency, >10g/L titer, ~$2/Kg PHA, and ~$1.6 MESP ($2.5 GGE).
• The project achieved all milestones at 1 Liter scale with 44 publications, and 2 patents.
• The project is being scaled up at ABBPDU with 50 Liter scale. 0 2 4 6 8
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Quad Chart Overview
Timeline
Project start date: 07/01/2016
Project end date: 12/31/2021
Percent complete: 95%

FY 19 
Costed

FY20
Costed Total Award

DOE 
Funding

$832,720 $547,572 $2,353,955

Project 
Cost Share

$265,122 $395,644 $788,747

Project Goal
1. Develop a viable bioprocess to convert biorefinery

waste to bioplastics at less than $5 dollar/Kg. 
2. Integrate technical advancements and TEA to 

evaluate the impact on lignocellulosic biorefinery.
3. Overcome the key challenges for biorefinery cost-

effectiveness and sustainability in the BETO  
MYPP. Bring down the biofuel cost to $3/GGE.

End of Project Milestone
At the end of the project, we achieved:
8.4g/L PHA titer;
40% conversion of lignin to PHA;
Less than $5/Kg of PHA price.

Currently, we have achieved:
>10g/L PHA titer;
>40% conversion of lignin to PHA;
~$2/Kg PHA
~$1.6/Gallon Ethanol and $2.5GGE

Project Partners*
Texas A&M University: 50%
University of Tennessee/Oak Ridge National Lab: 30%  
Washington State University: 15%
LNBL.: 5%
ICM inc.: Initial Partner; ABPDU: Scale up.

Funding Mechanism
FOA: DE-FOA-0001085; Topic 1: Process development 
and optimization of a single unit operation for the 
upgrading of chemically or biologically derived  
intermediates to fuels and products.  
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Responses to Reviewers’ Previous Comments

• We appreciate the reveiwer's comment that "significant progress has been made under lab- and 
benchscale conditions." In response to Reviewers’ request, we have built a complete ASPEN Model 
for TEA. The technology has been scaled up to 1Liter scale and the 50Liter scale-up plan is finalized. 
The integration with both current biorefinery configurations and our new biorefinery designs were 
evaluated using the TEA model, and the results highlighted the potential of the project to bring down 
MESP to about $1.6/Kg and the ethanol fuel to $2.5/GGE.

• We appreciate the reviewer's acknowledgement of "very nice results” in a “challenging project”. 
Regarding the two times of differences to achieve final outcome. We have achieved the goal and all 
milestones at 1 Liter level, thanking partly to the inputs from peer review, stage-gate, and intermediate 
verification. We also agreed with the reviewer on the challenges in scale up and is working on the 
50Liter scale up. Moreover, we have worked with Altex Technologies to scale up the technology at 
large scale for full biomass conversion into PHA. In addition, for addressing the concern over PHA 
price point, we have built an ASPEN model with sensitivity analysis of MEPS’ dependence on PHA 
price. We are also exploring the biodegradable material design to produce composites for broad 
packaging applications. In working with Danimer Scientific, we believe such broad applications will 
avoid PHA market saturation. 



Responses to Reviewers’ Previous Comments
• We appreciate the reveiwer's acknowledgement of the success of the CLARS platform. We agree with 

the reviewer on calculating the detailed conversion. We have obtained the detailed mass balance for 
the processes and integrate with ASPEN models. All current conversion rates are based on mass 
balance. Ferulic acid serves as a simplified model compound reference only. In any scaled up process 
of 1 Liter or 50 Liter, no laccase is used as it is not economic. We have developed non-enzyme-based 
lignin fractionation technologies. 

• We appreciate the reviewer acknowledged a ‘scientifically interesting’ proposal with ‘novel concept of 
biochemical lignin conversion.’ In response to the reviewer’s suggestion, we have built a complete 
ASPEN model and obtained detailed mass balance to identify the economic driver and platform 
performance. The comprehensive analysis allows the better ‘quantification of active substrates’. PHA 
is a perfect target for biorefinery products due to: (1) higher value, (2) large market potential due to the 
recent plastics waste management crisis, (3) serving as one of the many products for lignin utilization, 
and (4) funneling diverse aromatics into single products to reduce the separation challenge.

• We appreciate the reviewer acknowledging the holistic approach and ‘a range of accomplishment’. In 
response to the reviewer’s comment, we have carry out detailed mass balance analysis for each 
process. The study highlighted that lignin, especially the fractionated lignin’ utilization for PHA is the 
major driver for low cost of PHA. Scientifically, the ring opening of lignin monomers will produce 
organic acid-type compounds, which are preferred substrates for P. putida to produce PHA.
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Patent and Commercialization

• The project has led to two patent applications.
1. J.S. Yuan, et al., “Conversion of lignin into bioplastics and lipid fuels”, PCT/US2016/024579, WO

2016154631 A1 – The PCT patent is at US and EU application stage.
2. B. Yang, and Z. Xu, “Method for Production of Polyhydroxalkanoates and Uses Thereof”, PCT

/US2017 /057092, April 11, 2019.

• Commercialization efforts -- We have actively engaged with three industries.
1. For lignocellulosic biorefineries, we have worked closely with ICM inc. We also had dialogue with

POET for lignin utilization.
2. For bioplastics industry, we have been working with Danimer Scientific in obtaining funding for

the development of rapidly biodegradable composites with enhanced performance to allow broad
applications and larger market, while addressing the environmental challenges by petrochemical
plastics.

3. We are also working with Altex Technologies to scale up a relevant platform to convert full
biomass into PHA. We also explored the opportunities to work with Earth Energy Renewables to
develop waste to bioplastics platform.



Techno-Economic Analysis of PHA

UNITS Case B Case C Case D Case E Case F

Annual 
production MMkg 2.19 3.21 2.60 3.54 2.02

Total Capital 
Cost MM$ 44.984 42.636 42.128 39.845 42.121

Total Operating 
Cost MM$/yr 11.208 12.420 12.264 13.237 14.648

Raw Material MM$/yr 4.875 5.904 5.767 7.400 8.124

Utilities MM$/yr 0.268 0.267 0.266 0.270 0.266

Unit cost $/kg 7.52 5.49 6.73 5.05 9.90

Rate of return % 10 10 10 10 10

Minimum 
selling price $/kg 9.58 6.82 8.35 6.18 11.99



Cost Contribution of Minimum PHA Selling Price 
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Cost Contribution of Minimum PHA Selling Price
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Example of Mass Balance
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